Implications of the Research on Overconfidence for Challenge Problem Solution Strategies

Vicki Bier, University of Wisconsin August 2002

Algebraic Problem Set

- $* Y = (a + b)^a$:
 - a and b are independent, positive, real numbers
- Example--Problem 2:
 - A is contained in the closed interval $A = [a_1, a_2]$
 - Information about b is given by n independent sources
 - Each source specifies an interval B_i = [b₁ⁱ, b₂ⁱ] of possible values for b
 - The B_i can be consonant (nested), consistent, or inconsistent

Questions about Context

- How were the intervals obtained?
 - What else (if anything) is known?
- Are they "infallible" (i.e., contain the true value with probability one)?
 - Cannot be true if they are inconsistent
- If the intervals are not infallible:
 - How likely are they to contain the true value?

Questions about Context

- # If intervals are not infallible:
 - Why does it matter whether the intervals are consonant, consistent, or arbitrary?
- Emphasizing this suggests replacing consistent intervals by their intersection!
- What is wrong with that suggestion?
 - Overconfidence
 - Dependence

Overconfidence

- "Assessments can be...overconfident, whereby the proportions correct are less than the assessed probabilities"
 - Lichtenstein et al. (1982)
- "No problem in judgment and decision making is more prevalent and more potentially catastrophic than overconfidence"
 - Plous (1993)

Overconfidence

- For 98% confidence intervals, the "surprise index"
 - (Percentage of true values that fall outside the specified range)

should be 2%

- Typical values of the surprise index range from 20% to 40%:
 - Experts are as overconfident as laypeople!

Example of Overconfidence

- Height at which an embankment would fail:
 - 7 "internationally known" geo-technical engineers
 - Hynes and Vanmarcke (1976)
- Error bars fail to contain the true value!
 - Example of "inconsistent" intervals

Examples of Overconfidence

- Henrion and Fischhoff (1986):
 - Confidence intervals for the velocity of light and other physical constants (gravitational constant, magnetic moment of the proton, etc.)
 - Surprise indices ranged from 0% to 57%
- Shlyakhter and Kammen (1994):
 - Confidence intervals for 281 elementary particle properties, energy demand forecasts, and population projections
 - Systematic errors of 3 σ for population growth (!),
 1 σ for physical constants and energy demand

Problems with Overconfidence

- Overconfidence can lead to incorrect decisions:
 - Accepting excessive risks (if decision maker is risk averse)
 - Declining desirable risks (if decision maker is risk seeking)
 - Failing to gather information that could cost-effectively help to reduce uncertainty

- Cognitive strategies (Plous, 1993):
 - "Intense performance feedback"
 - "Stop to consider reasons why your judgment might be wrong"

- Broadening failure rate distributions:
 - Some risk analyses treat the stated 5th and 95th percentiles as 20th and 80th percentiles
 - Martz (1984) suggests treating 5th and 95th percentiles as 12th and 88th percentiles, based on an empirical Bayes model

- Using long-tailed distributions:
 - E.g., a "compound" distribution, in which a distribution is used to express uncertainty about the extent of overconfidence
 - Shlyakhter (1994), Shlyakhter et al. (1994)

Overcoming Overconfidence

- Weighting experts by their calibration:
 - Cooke (1991) suggests weighting experts by how well calibrated and informative they are in a set of empirical calibration questions
 - This method typically outperforms other methods, and also the best expert, in terms of entropy and calibration on the calibration questions
 - In some applications (e.g., Cooke, et al., 1994), the majority of experts may be assigned a weight of zero based on poor estimates of known items

Dependence among Experts

- Expert opinions are also likely to be positively correlated:
 - May reflect a single school of thought
 - May reflect "conventional wisdom" in a field
 - May be influenced by the same data
 - May be influenced by a single vocal expert
 - See for example Booker and Meyer (1985)

Problems with Dependence

- Positive correlation among experts can exacerbate overconfidence:
 - If experts are treated as independent,
 overlap in their intervals will be taken as
 stronger evidence than is justified
 - This effect is particularly strong when correlations are large—e.g., > 0.8
 - See Winkler and Clemen (1992)

Problems with Dependence

- The value of additional experts decreases rapidly with the number of experts:
 - Even for small correlations, there may be little additional value provided by consulting more than four or five experts
 - Infinitely many experts with correlation 0.25 is equivalent to only four independent experts!
 - See Clemen and Winkler (1985)

Analyzing Dependence

- Bayesian updating using copulas or other multivariate likelihood functions:
 - Multivariate normal or lognormal (Winkler, 1981; Chhibber and Apostolakis, 1993)
 - Dirichlet (Mendel and Sheridan, 1989)
 - Copulas (Jouini and Clemen, 1996)
- Other joint distributions can be used

Analyzing Dependence

- Clemen et al. (2000):
 - "The most accurate way to obtain a subjective dependence measure is simply to ask...the correlation"
 - "Accuracy can be improved in two ways" training, and averaging several different dependence measures

- Chhibber and Apostolakis (1993):
 - "The sensitivity of the...posterior standard deviation to ρ is small"
 - "Thus, approximations in the assessment of ρ may be acceptable"

One Simple Strategy

- Distributions were fit to stated 5th/95th percentiles for expected part life
- Distributions were combined using arithmetic averaging
 - (Crystal Ball Monte Carlo software)
- Each expert was assumed to have an equal probability of being "correct"

Comparison of Estimates (Consistent intervals)

Comparison of Estimates (Inconsistent intervals)

Advantages of Approach

- Easy to explain
- Easy to implement
- No need for judgments of dependence
- Gives modest weight to "outlier" experts
- All experts' opinions are used

Disadvantages of Approach

- No rigorous theoretical basis
- Distributions will tend to be:
 - Too broad when overconfidence and dependence are low
 - Too narrow when overconfidence and dependence are high
- May give multi-modal distributions when disagreement among experts is high